Câu 2:
Cho $f:\mathop R\nolimits^3 \to \mathop R\nolimits^3$ , Tập V tất cả $(\mathop x\nolimits_1 ,\mathop x\nolimits_2 ,\mathop x\nolimits_3 )$$f(\mathop x\nolimits_1 ,\mathop x\nolimits_2 ,\mathop x\nolimits_3 ) = (\mathop x\nolimits_1 + \mathop x\nolimits_2 + \mathop x\nolimits_3 ,\mathop x\nolimits_1 + \mathop x\nolimits_2 + \mathop x\nolimits_3 ,\mathop x\nolimits_1 - \mathop x\nolimits_2 - \mathop x\nolimits_3 )$ thỏa $f(\mathop x\nolimits_1 ,\mathop x\nolimits_2 ,\mathop x\nolimits_3 )$ =0 là: